In vivo optical imaging of acute cell death using a near-infrared fluorescent zinc-dipicolylamine probe.

نویسندگان

  • Bryan A Smith
  • Seth T Gammon
  • Shuzhang Xiao
  • Wei Wang
  • Sarah Chapman
  • Ryan McDermott
  • Mark A Suckow
  • James R Johnson
  • David Piwnica-Worms
  • George W Gokel
  • Bradley D Smith
  • W Matthew Leevy
چکیده

Cell death is a fundamental biological process that is present in numerous disease pathologies. Fluorescent probes that detect cell death have been developed for a myriad of research applications ranging from microscopy to in vivo imaging. Here we describe a synthetic near-infrared (NIR) conjugate of zinc(II)-dipicolylamine (Zn²+-DPA) for in vivo imaging of cell death. Chemically induced in vivo models of myopathy were established using an ionphore, ethanol, or ketamine as cytotoxins. The Zn²+-DPA fluorescent probe or corresponding control was subsequently injected, and whole animal fluorescence imaging demonstrated probe uptake at the site of muscle damage, which was confirmed by ex vivo and histological analyses. Further, a comparative study with a NIR fluorescent conjugate Annexin V showed less intense uptake at the site of muscle damage and high accumulation in the bladder. The results indicate that the fluorescent Zn²+-DPA conjugate is an effective probe for in vivo cell death detection and in some cases may be an appropriate alternative to fluorescent Annexin V conjugates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical imaging of mammary and prostate tumors in living animals using a synthetic near infrared zinc(II)-dipicolylamine probe for anionic cell surfaces.

In vivo optical imaging shows that a fluorescent imaging probe, comprised of a near-infrared fluorophore attached to an affinity group containing two zinc(II)-dipicolylamine (Zn-DPA) units, targets prostate and mammary tumors in two different xenograft animal models. The tumor selectivity is absent with control fluorophores whose structures do not have appended Zn-DPA targeting ligands. Ex vivo...

متن کامل

Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe.

An optical imaging probe was synthesized by attaching a near-infrared carbocyanine fluorophore to an affinity group containing two zinc(II) dipicolylamine (Zn-DPA) units. The probe has a strong and selective affinity for the surfaces of bacteria, and it was used to image infections of Gram-positive S. aureus and Gram-negative E. coli bacteria in living nude mice. After intravenous injection, th...

متن کامل

Deep-red fluorescent imaging probe for bacteria.

A versatile deep-red fluorescent imaging probe is described that is comprised of a bis(zinc(II)-dipicolylamine) targeting unit covalently attached to a pentamethine carbocyanine fluorophore with Cy5-like spectroscopic properties. A titration assay based on fluorescence resonance energy transfer is used to prove that the probe selectively associates with anionic vesicle membranes whose compositi...

متن کامل

Noninvasive optical imaging of staphylococcus aureus bacterial infection in living mice using a Bis-dipicolylamine-Zinc(II) affinity group conjugated to a near-infrared fluorophore.

Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as light-emitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is a need for exogenous synthetic probes that can selectively target bacteria. The focus of this study is a fluorescent imaging probe that is compos...

متن کامل

Library Synthesis, Screening, and Discovery of Modified Zinc(II)-Bis(dipicolylamine) Probe for Enhanced Molecular Imaging of Cell Death

Zinc(II)-bis(dipicolylamine) (Zn-BDPA) coordination complexes selectively target the surfaces of dead and dying mammalian cells, and they have promise as molecular probes for imaging cell death. A necessary step toward eventual clinical imaging applications is the development of next-generation Zn-BDPA complexes with enhanced affinity for the cell death membrane biomarker, phosphatidylserine (P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular pharmaceutics

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2011